ASSAY

Dissolve 0.600 g in a mixture of 5.0 ml of 0.01 M hydrochloric acid and 75 ml of ethanol (96 per cent) R. Carry out a potentiometric titration (2.2.20), using 0.1 M sodium hydroxide. Read the volume added between the 2 points of inflexion.

1 ml of 0.1 M sodium hydroxide is equivalent to 68.18 mg of $C_{25}H_{30}CII_2NO_3$.

STORAGE

Protected from light, at a temperature not exceeding 30 °C.

IMPURITIES

Specified impurities: A, B, C, D, E, F, G, H.

A. R1 = R2 = R4 = H, R3 = C₂H₅: (2-butylbenzofuran-3-yl)[4-[2-(diethylamino)ethoxy]phenyl]methanone,

B. R1 = R2 = I, R3 = R4 = H: (2-butylbenzofuran-3-yl)[4-[2-(ethylamino)ethoxy]-3,5-diiodophenyl]methanone,

C. R1 = I, R2 = R4 = H, R3 = C_2H_5 : (2-butylbenzofuran-3-yl)[4-[2-(diethylamino)ethoxy]-3-iodophenyl]methanone,

G. R1 = R2 = I, R3 = C_2H_5 , R4 = OCH₃: [2-[(1RS)-1-methoxybutyl]benzofuran-3-yl][4-[2-(diethylamino)ethoxy]-3,5-diiodophenyl]methanone,

D. R1 = R2 = I: (2-butylbenzofuran-3-yl)(4-hydroxy-3,5-diiodophenyl)methanone.

E. R1 = R2 = H: (2-butylbenzofuran-3-yl)(4-hydroxyphenyl)methanone,

F. R1 = I, R2 = H: (2-butylbenzofuran-3-yl)(4-hydroxy-3-iodophenyl)methanone,

H. 2-chloro-*N*,*N*-diethylethanamine (2-chlorotriethylamine,(2-chloroethyl)diethylamine).

01/2008:1490 corrected 6.0

AMISULPRIDE

Amisulpridum

 $C_{17}H_{27}N_3O_4S$ [71675-85-9]

 $M_{\rm r}$ 369.5

DEFINITION

4-Amino-*N*-[[(2*RS*)-1-ethylpyrrolidin-2-yl]methyl]-5-(ethylsulphonyl)-2-methoxybenzamide.

Content: 99.0 per cent to 101.0 per cent (dried substance).

CHARACTERS

Appearance: white or almost white, crystalline powder. *Solubility*: practically insoluble in water, freely soluble in methylene chloride, sparingly soluble in anhydrous ethanol. mp: about 126 °C.

IDENTIFICATION

Infrared absorption spectrophotometry (2.2.24).

Comparison: amisulpride CRS.

TESTS

Appearance of solution. The solution is not more opalescent than reference suspension II (2.2.1) and not more intensely coloured than reference solution Y_6 (2.2.2, Method II).

Dissolve 1.0 g in 3 ml of a mixture of 1 volume of *acetic acid* R and 4 volumes of *water* R and dilute to 20 ml with *water* R.

Optical rotation (2.2.7): -0.10° to $+0.10^{\circ}$.

Dissolve 5.0 g in $dimethyl formamide\ R$ and dilute to 50.0 ml with the same solvent.

Impurity A. Thin-layer chromatography (2.2.27).

Test solution. Dissolve 0.20 g in *methanol R* and dilute to 10 ml with the same solvent.

Reference solution (a). Dissolve 5 mg of sulpiride impurity A CRS (amisulpride impurity A) in methanol R and dilute to 25 ml with the same solvent. Dilute 2 ml of the solution to 20 ml with methanol R.

Reference solution (b). Dilute 1 ml of the test solution to 10 ml with reference solution (a).

Plate: TLC silica gel G plate R.

Mobile phase: the upper layer obtained after shaking a mixture of a 50 per cent V/V solution of *concentrated ammonia R*, anhydrous ethanol R and di-isopropyl ether R (10:25:65 V/V/V).

Application: 10 µl.

Development: over a path of 12 cm.

Drying: in air.

Detection: spray with *ninhydrin solution R* and heat at 100-105 °C for 15 min.

System suitability: the chromatogram obtained with reference solution (b) shows 2 clearly separated spots.

Limit:

 impurity A: any spot corresponding to impurity A is not more intense than the spot in the chromatogram obtained with reference solution (a) (0.1 per cent).

Related substances. Examine by liquid chromatography (2.2.29).

Test solution. Dissolve 0.10 g in 30 ml of *methanol R* and dilute to 100.0 ml with mobile phase B.

Reference solution (a). Dilute 5.0 ml of the test solution to 100.0 ml with a mixture of 30 volumes of mobile phase A and 70 volumes of mobile phase B. Dilute 1.0 ml of the solution to 25.0 ml with a mixture of 30 volumes of mobile phase A and 70 volumes of mobile phase B.

Reference solution (b). Dissolve 5 mg of amisulpride impurity B CRS in 5 ml of the test solution and dilute to 50 ml with a mixture of 30 volumes of mobile phase A and 70 volumes of mobile phase B. Dilute 1 ml of the solution to 10 ml with a mixture of 30 volumes of mobile phase A and 70 volumes of mobile phase B.

Column:

- size: l = 0.25 m, $\emptyset = 4.6$ mm,
- stationary phase: octylsilyl silica gel for chromatography R (5 µm) with a carbon loading of 16 per cent, a specific surface area of 330 m²/g and a pore size of 7.5 nm.

Mobile phase:

- mobile phase A: methanol R,
- mobile phase B: 0.7 g/l solution of sodium octanesulphonate R in a 0.25 per cent V/V solution of dilute sulphuric acid R,

Time (min)	Mobile phase A (per cent V/V)	Mobile phase B (per cent V/V)
0 - 18	$30 \rightarrow 36$	$70 \rightarrow 64$
18 - 35	$36 \rightarrow 52$	$64 \rightarrow 48$
35 - 45	52	48
45 - 46	$52 \rightarrow 30$	$48 \rightarrow 70$
46 - 56	30	70

Flow rate: 1.5 ml/min.

Detection: spectrophotometer at 225 nm.

Injection: 10 µl.

System suitability: reference solution (b):

 resolution: minimum 2.0 between the peaks due to amisulpride and impurity B.

Limits:

- any impurity: not more than 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.1 per cent),
- total: not more than 1.5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.3 per cent),
- disregard limit: 0.1 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.02 per cent).

Chlorides (2.4.4): maximum 200 ppm.

Shake 0.5 g with 30 ml of water R for 10 min. Filter. 15 ml of the filtrate complies with the test.

Heavy metals (2.4.8): maximum 10 ppm.

Dissolve 4.0 g by gently heating in 5 ml of *dilute acetic acid R*. Allow to cool and dilute to 20 ml with *water R*. 12 ml of the solution complies with test A. Prepare the reference solution using *lead standard solution (2 ppm Pb) R*.

Loss on drying (2.2.32): maximum 0.5 per cent, determined on 1.000 g by drying in an oven at 105 $^{\circ}$ C for 3 h.

Sulphated ash (2.4.14): maximum 0.1 per cent, determined on 1.0 g.

ASSAY

Dissolve 0.300 g with shaking in a mixture of 5 ml of *acetic* anhydride R and 50 ml of anhydrous acetic acid R. Titrate with 0.1 M perchloric acid, determining the end-point potentiometrically (2.2.20).

1 ml of 0.1 M perchloric acid is equivalent to 36.95 mg of $\rm C_{17}H_{27}N_3O_4S.$

IMPURITIES

$$H_2N$$
 N
and enantiomer CH_3

A. [(2RS)-1-ethylpyrrolidin-2-yl]methanamine,

- B. R1 = OH, R2 = SO_2 -CH $_2$ -CH $_3$: 4-amino-*N*-[[(2*RS*)-1-ethylpyrrolidin-2-yl]methyl]-5-(ethylsulphonyl)-2-hydroxybenzamide,
- C. R1 = OCH₃, R2 = I: 4-amino-*N*-[[(2*RS*)-1-ethylpyrrolidin-2-yl]methyl]-5-iodo-2-methoxybenzamide,
- D. R1 = OCH₃, R2 = SO₂-CH₃: 4-amino-*N*-[[(2*RS*)-1-ethylpyrrolidin-2-yl]methyl]-2-methoxy-5-(methylsulphonyl)benzamide,

$$H_3C$$
 S CO_2H OCH_3

E. 4-amino-5-(ethylsulphonyl)-2-methoxybenzoic acid.