

of sodium pyrophosphate *R* and dilute to 1000 ml with water *R* (solution B). Mix about 700 ml of solution A and about 300 ml of solution B to obtain a solution of pH 4.4. To 1000 ml of this solution, add 0.25 g of tetrahexylammonium hydrogen sulphate *R* and 100 ml of methanol *R*.

Flow rate: 1.0 ml/min.

Detection: spectrophotometer at 230 nm.

Injection: 20 µl.

Run time: 2.5 times the retention time of foscarnet.

System suitability: reference solution (b):

- **resolution:** minimum 7 between the peaks due to foscarnet and impurity B.

Limits:

- **impurities A, B, C:** for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (0.2 per cent);
- **total:** not more than twice the area of the principal peak in the chromatogram obtained with reference solution (a) (0.4 per cent);
- **disregard limit:** 0.2 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.04 per cent); disregard any peak with a relative retention time less than 0.6.

Phosphate and phosphite. Liquid chromatography (2.2.29).

Test solution. Dissolve 60.0 mg of the substance to be examined in water *R* and dilute to 25.0 ml with the same solvent.

Reference solution (a). Dissolve 28 mg of sodium dihydrogen phosphate monohydrate *R* in water *R* and dilute to 100 ml with the same solvent.

Reference solution (b). Dissolve 43 mg of sodium phosphite pentahydrate *R* in water *R* and dilute to 100 ml with the same solvent.

Reference solution (c). Dilute 1.0 ml of reference solution (a) and 1.0 ml of reference solution (b) to 25 ml with water *R*.

Reference solution (d). Dilute 3 ml of reference solution (a) and 3 ml of reference solution (b) to 25 ml with water *R*.

Column:

- **size:** $l = 0.05$ m, $\varnothing = 4.6$ mm;
- **stationary phase:** anion exchange resin *R*.

Mobile phase: dissolve 0.102 g of potassium hydrogen phthalate *R* in water *R*, add 2.5 ml of 1 M nitric acid and dilute to 1000 ml with water *R*.

Flow rate: 1.4 ml/min.

Detection: spectrophotometer at 290 nm (indirect detection).

Injection: 20 µl of the test solution and reference solutions (c) and (d).

System suitability: reference solution (d):

- **resolution:** minimum 2.0 between the peaks due to phosphate (1st peak) and phosphite;
- **signal-to-noise ratio:** minimum 10 for the principal peak.

Limits:

- **phosphate:** not more than the area of the corresponding peak in the chromatogram obtained with reference solution (c) (0.3 per cent);
- **phosphite:** not more than the area of the corresponding peak in the chromatogram obtained with reference solution (c) (0.3 per cent).

Heavy metals: maximum 10 ppm.

Dissolve 1.25 g in 12.5 ml of 1 M hydrochloric acid. Warm on a water-bath for 3 min and cool to room temperature. Transfer to a beaker and adjust the pH to about 3.5 with

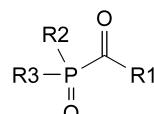
dilute ammonia *R* and dilute to 25 ml with water *R* (solution A). To 12 ml of solution A, add 2.0 ml of buffer solution pH 3.5 *R*. Rapidly pour the mixture into a test tube containing 1 drop of sodium sulphide solution *R*. The solution is not more intensely coloured than a reference solution prepared simultaneously and in the same manner pouring a mixture of 5.0 ml of lead standard solution (1 ppm Pb) *R*, 5.0 ml of water *R*, 2.0 ml of solution A and 2.0 ml of buffer solution pH 3.5 *R* into a test tube containing 1 drop of sodium sulphide solution *R*.

Loss on drying (2.2.32): 35.0 per cent to 37.0 per cent, determined on 1.000 g by drying in an oven at 150 °C.

Bacterial endotoxins (2.6.14): less than 83.3 IU/g, if intended for use in the manufacture of parenteral dosage forms without a further appropriate procedure for the removal of bacterial endotoxins.

ASSAY

Dissolve 0.200 g in 50 ml of water *R*. Titrate with 0.05 M sulphuric acid, determining the end-point potentiometrically (2.2.20) at the 1st inflection point.

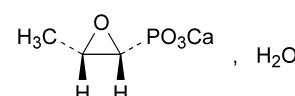

1 ml of 0.05 M sulphuric acid is equivalent to 19.20 mg of $\text{CNa}_3\text{O}_5\text{P}$.

STORAGE

Protected from light.

IMPURITIES

Specified impurities: A, B, C, D.



- A. $\text{R}_1 = \text{OC}_2\text{H}_5$, $\text{R}_2 = \text{R}_3 = \text{ONa}$: disodium (ethoxycarbonyl)phosphonate,
- B. $\text{R}_1 = \text{R}_2 = \text{ONa}$, $\text{R}_3 = \text{OC}_2\text{H}_5$: disodium (ethoxyoxydophosphanyl)formate,
- C. $\text{R}_1 = \text{R}_2 = \text{OC}_2\text{H}_5$, $\text{R}_3 = \text{ONa}$: ethyl sodium (ethoxycarbonyl)phosphonate,
- D. $\text{R}_1 = \text{R}_2 = \text{R}_3 = \text{OC}_2\text{H}_5$: methyl (diethoxyphosphoryl)formate.

01/2008:1328
corrected 6.0

FOSFOMYCIN CALCIUM

Fosfomycinum calcicum

M_r 194.1

DEFINITION

Calcium (2*R*,3*S*)-(3-methyloxiran-2-yl)phosphonate monohydrate.

Substance produced by certain strains of *Streptomyces fradiae* or obtained by any other means.

Content: 95.0 per cent to 101.0 per cent (anhydrous substance).

CHARACTERS

Appearance: white or almost white powder.

Solubility: slightly soluble in water, practically insoluble in acetone, in methanol and in methylene chloride.

IDENTIFICATION

First identification: A, D.

Second identification: B, C, D.

A. Infrared absorption spectrophotometry (2.2.24).

Preparation: discs of potassium bromide R.

Comparison: Ph. Eur. reference spectrum of fosfomycin calcium.

B. Dissolve about 0.1 g in 3 ml of a 25 per cent V/V solution of perchloric acid R. Add 1 ml of 0.1 M sodium periodate and heat on a water-bath for 30 min. Allow to cool and add 50 ml of water R. Neutralise with a saturated solution of sodium hydrogen carbonate R and add 1 ml of a freshly prepared 400 g/l solution of potassium iodide R. Prepare a blank at the same time and in the same manner. The test solution remains colourless and the blank is orange.

C. To about 8 mg add 2 ml of water R, 1 ml of perchloric acid R and 2 ml of 0.1 M sodium periodate. Heat on a water-bath for 10 min and add, without cooling, 1 ml of ammonium molybdate solution R5 and 1 ml of aminohydroxynaphthalenesulphonic acid solution R. Allow to stand for 30 min. A blue colour develops.

D. It gives reaction (a) of calcium (2.3.1).

TESTS

pH (2.2.3): 8.1 to 9.6.

Dissolve 20 mg in carbon dioxide-free water R and dilute to 20.0 ml with the same solvent.

Specific optical rotation (2.2.7): –11.0 to –13.0 (anhydrous substance).

Dissolve 2.5 g in a 125 g/l solution of sodium edetate R previously adjusted to pH 8.5 with strong sodium hydroxide solution R, and dilute to 50.0 ml with the same solution. Measure at 405 nm using a mercury lamp.

Impurity A: maximum 1.5 per cent.

In a glass-stoppered flask, dissolve 0.200 g in 100.0 ml of water R. Add 50 ml of 0.5 M phthalate buffer solution pH 6.4 R and 5.0 ml of 0.005 M sodium periodate, close and shake. Allow to stand protected from light for 90 min. Add 10 ml of a freshly prepared 400 g/l solution of potassium iodide R, close and shake for 2 min. Titrate with 0.0025 M sodium arsenite until the yellow colour almost disappears. Add 2 ml of starch solution R and slowly continue the titration until the colour is completely discharged. Carry out a blank test under the same conditions. Calculate the percentage content of C₃H₅CaO₅P using the following expression:

$$\frac{(n_1 - n_2) \times c \times 97}{m (100 - H)} \times 100$$

m = mass of the substance to be examined, in milligrams;

*n*₁ = volume of 0.0025 M sodium arsenite used in the blank titration;

*n*₂ = volume of 0.0025 M sodium arsenite used in the titration of the test solution;

c = molarity of the sodium arsenite solution;

H = percentage content of water.

Chlorides (2.4.4): maximum 0.2 per cent.

Dissolve 0.500 g in water R, add 2 ml of nitric acid R and dilute to 50 ml with the same acid. To 2.5 ml of this solution add 12.5 ml of water R.

Heavy metals (2.4.8): maximum 20 ppm.

Dissolve 2.5 g in 6 ml of glacial acetic acid R and dilute to 25.0 ml with water R. 12 ml of the solution complies with test A. Prepare the reference solution using lead standard solution (2 ppm Pb) R.

Water (2.5.12): 8.5 per cent to 11.5 per cent, determined on 0.250 g. Use as the solvent a mixture of 1 volume of pyridine R and 3 volumes of ethylene glycol R.

ASSAY

In a glass-stoppered flask, dissolve 0.120 g in 20.0 ml of 0.1 M sodium periodate. Add 5 ml of a 50 per cent V/V solution of perchloric acid R and shake. Heat in a water-bath at 37 °C for 105 min. Add 50 ml of water R and immediately adjust to pH 6.4 with a saturated solution of sodium hydrogen carbonate R. Add 10 ml of a freshly prepared 400 g/l solution of potassium iodide R, close and allow to stand for 2 min. Titrate with 0.1 M sodium arsenite until the yellow colour almost disappears. Add 2 ml of starch solution R and slowly continue the titration until the colour is completely discharged. Carry out a blank test under the same conditions.

Calculate the percentage content of C₃H₅CaO₅P using the following expression:

$$\frac{(n_1 - n_2) \times c \times 88 \times 100}{m (100 - H)} \times 100 - G$$

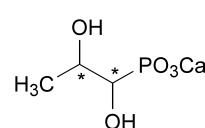
m = mass of the substance to be examined, in milligrams;

*n*₁ = volume of 0.1 M sodium arsenite used in the blank titration;

*n*₂ = volume of 0.1 M sodium arsenite used in the titration of the test solution;

c = molarity of the sodium arsenite solution;

G = percentage content of impurity A;


H = percentage content of water.

STORAGE

In an airtight container, protected from light.

IMPURITIES

Specified impurities: A.

A. calcium (1,2-dihydroxypropyl)phosphonate.