01/2008:0042 corrected 6.0

MAGNESIUM CARBONATE, LIGHT

Magnesii subcarbonas levis

[546-93-0]

DEFINITION

Hydrated basic magnesium carbonate.

Content: 40.0 per cent to 45.0 per cent, calculated as MgO (M, 40.30).

CHARACTERS

Appearance: white or almost white powder.

Solubility: practically insoluble in water. It dissolves in dilute acids with effervescence.

IDENTIFICATION

- A. 15 g has an apparent volume (2.9.15) before settling of at least 100 ml.
- B. It gives the reaction of carbonates (2.3.1).
- C. Dissolve about 15 mg in 2 ml of *dilute nitric acid R* and neutralise with *dilute sodium hydroxide solution R*. The solution gives the reaction of magnesium (2.3.1).

TESTS

Solution S. Dissolve 5.0 g in 100 ml of *dilute acetic acid R*. When the effervescence has ceased, boil for 2 min, allow to cool and dilute to 100 ml with *dilute acetic acid R*. Filter, if necessary, through a previously ignited and tared porcelain or silica filter crucible of suitable porosity to give a clear filtrate.

Appearance of solution. Solution S is not more intensely coloured than reference solution B_4 (2.2.2, Method II).

Soluble substances: maximum 1.0 per cent.

Mix 2.00 g with 100 ml of *water R* and boil for 5 min. Filter whilst hot through a sintered-glass filter (40) (2.1.2), allow to cool and dilute to 100 ml with *water R*. Evaporate 50 ml of the filtrate to dryness and dry at 100-105 $^{\circ}$ C. The residue weighs a maximum of 10 mg.

Substances insoluble in acetic acid: maximum 0.05 per cent

Any residue obtained during the preparation of solution S, washed, dried and ignited at 600 \pm 50 $^{\circ}$ C, weighs a maximum of 2.5 mg.

Chlorides (2.4.4): maximum 700 ppm.

Dilute 1.5 ml of solution S to 15 ml with water R.

Sulphates (2.4.13): maximum 0.3 per cent.

Dilute 1 ml of solution S to 15 ml with distilled water R.

Arsenic (2.4.2, Method A): maximum 2 ppm, determined on 10 ml of solution S.

Calcium (2.4.3): maximum 0.75 per cent.

Dilute 2.6 ml of solution S to 150 ml with *distilled water R*. 15 ml of the solution complies with the test.

Iron (2.4.9): maximum 400 ppm.

Dissolve $0.1 \text{ g in } 3 \text{ ml of } dilute \ hydrochloric \ acid \ R$ and dilute to 10 ml with $water \ R$. Dilute 2.5 ml of the solution to 10 ml with $water \ R$.

Heavy metals (2.4.8): maximum 20 ppm.

To 20 ml of solution S add 15 ml of *hydrochloric acid R1* and shake with 25 ml of *methyl isobutyl ketone R* for

2 min. Allow to stand, separate the aqueous lower layer and evaporate to dryness. Dissolve the residue in 1 ml of *acetic acid R* and dilute to 20 ml with *water R*. 12 ml of the solution complies with test A. Prepare the reference solution using *lead standard solution* (1 ppm Pb) R.

ASSAY

Dissolve 0.150 g in a mixture of 2 ml of *dilute hydrochloric* acid R and 20 ml of water R. Carry out the complexometric titration of magnesium (2.5.11).

1 ml of $0.1\,M$ sodium edetate is equivalent to $4.030\,\mathrm{mg}$ of MgO.

01/2008:0402 corrected 6.0

MAGNESIUM CHLORIDE HEXAHYDRATE

Magnesii chloridum hexahydricum

MgCl₂,6H₂O [7791-18-6]

 M_{r} 203.3

DEFINITION

Content: 98.0 per cent to 101.0 per cent of MgCl₂,6H₂O.

CHARACTERS

Appearance: colourless crystals, hygroscopic.

Solubility: very soluble in water, freely soluble in ethanol (96 per cent).

IDENTIFICATION

- A. Water (see Tests).
- B. It gives reaction (a) of chlorides (2.3.1).
- C. It gives the reaction of magnesium (2.3.1).

TESTS

Solution S. Dissolve 10.0 g in *carbon dioxide-free water R* prepared from *distilled water R* and dilute to 100.0 ml with the same solvent.

Appearance of solution. Solution S is clear (2.2.1) and colourless (2.2.2, Method II).

Acidity or alkalinity. To 5 ml of solution S add 0.05 ml of *phenol red solution R*. Not more than 0.3 ml of *0.01 M hydrochloric acid* or *0.01 M sodium hydroxide* is required to change the colour of the indicator.

Bromides: maximum 500 ppm.

Dilute 2.0 ml of solution S to 10.0 ml with water R. To 1.0 ml of this solution add 4.0 ml of water R, 2.0 ml of phenol red solution R3 and 1.0 ml of chloramine solution R2 and mix immediately. After exactly 2 min, add 0.30 ml of 0.1 M sodium thiosulphate, mix and dilute to 10.0 ml with water R. The absorbance (2.2.25) of the solution measured at 590 nm, using water R as the compensation liquid, is not greater than that of a standard prepared at the same time and in the same manner using 5.0 ml of a 3 mg/l solution of potassium bromide R.

Sulphates (2.4.13): maximum 100 ppm, determined on solution S.

Aluminium (2.4.17): maximum 1 ppm, if intended for use in the manufacture of peritoneal dialysis solutions, haemodialysis solutions, or haemofiltration solutions.

Prescribed solution. Dissolve 4 g in 100 ml of water R and add 10 ml of acetate buffer solution pH $6.0\ R$.