01/2008:2160 DEFINITION

MAGNESIUM LACTATE DIHYDRATE

Magnesii lactas dihydricus

$$Mg^{2+}$$
 H OH GO_2 and enantiomer , $2H_2O$

 $C_6H_{10}MgO_6,2H_2O$

$M_{\rm r}$ 238.5

DEFINITION

Magnesium bis(2-hydroxypropanoate) or mixture of magnesium (2R)-, (2S)- and (2RS)-2-hydroxypropanoate dihydrate.

Content: 98.0 per cent to 102.0 per cent (dried substance).

CHARACTERS

Appearance: white or almost white, crystalline or granular powder.

Solubility: slightly soluble in water, soluble in boiling water, practically insoluble in ethanol (96 per cent).

IDENTIFICATION

A. It gives the reaction of lactates (2.3.1).

B. It gives the reaction of magnesium (2.3.1).

TESTS

Solution S. Dissolve 5.0 g with heating in *carbon dioxide-free* water R prepared from distilled water R, allow to cool and dilute to 100 ml with the same solvent.

Appearance of solution. Solution S is not more opalescent than reference suspension II (2.2.1) and not more intensely coloured than reference solution BY₆ (2.2.2, Method II).

pH (2.2.3): 6.5 to 8.5 for solution S.

Chlorides (2.4.4): maximum 200 ppm.

Dilute 5 ml of solution S to 15 ml with water R.

Sulphates (2.4.13): maximum 400 ppm.

Dilute 7.5 ml of solution S to 15 ml with distilled water R.

Iron (2.4.9): maximum 50 ppm.

Dilute 4 ml of solution S to 10 ml with water R.

Heavy metals (2.4.8): maximum 20 ppm.

12 ml of solution S complies with test A. Prepare the reference solution using lead standard solution (1 ppm Pb) R.

Loss on drying (2.2.32): 14.0 per cent to 17.0 per cent. determined on 0.500 g by drying in an oven at 125 °C.

ASSAY

Dissolve 0.180 g in water R and dilute to 300 ml with the same solvent. Carry out the complexometric titration of magnesium (2.5.11).

1 ml of 0.1 M sodium edetate is equivalent to 20.25 mg of $C_6H_{10}MgO_6$.

> 01/2008:0041 corrected 6.0

MAGNESIUM OXIDE, HEAVY

Magnesii oxidum ponderosum

MgO [1309-48-4] M, 40.30

Content: 98.0 per cent to 100.5 per cent of MgO (ignited substance).

CHARACTERS

Appearance: fine, white or almost white powder. Solubility: practically insoluble in water. It dissolves in dilute acids with at most slight effervescence.

IDENTIFICATION

- A. 15 g has an apparent volume (2.9.15) before settling of not more than 60 ml.
- B. Dissolve about 15 mg in 2 ml of dilute nitric acid R and neutralise with dilute sodium hydroxide solution R. The solution gives the reaction of magnesium (2.3.1).
- C. Loss on ignition (see Tests).

TESTS

Solution S. Dissolve 5.0 g in a mixture of 30 ml of *distilled* water R and 70 ml of acetic acid R, boil for 2 min, cool and dilute to 100 ml with *dilute acetic acid R*. Filter, if necessary, through a previously ignited and tared porcelain or silica filter crucible of suitable porosity to give a clear filtrate.

Appearance of solution. Solution S is not more intensely coloured than reference solution B₃ (2.2.2, Method II).

Soluble substances: maximum 2.0 per cent.

To 2.00 g add 100 ml of water R and boil for 5 min. Filter whilst hot through a sintered-glass filter (40) (2.1.2), allow to cool and dilute to 100 ml with water R. Evaporate 50 ml of the filtrate to dryness and dry at 100-105 °C. The residue weighs a maximum of 20 mg.

Substances insoluble in acetic acid: maximum 0.1 per cent. Any residue obtained during the preparation of solution S, washed, dried, and ignited at 600 ± 50 °C, weighs a maximum of 5 mg.

Chlorides (2.4.4): maximum 0.1 per cent.

Dilute 1 ml of solution S to 15 ml with water R.

Sulphates (2.4.13): maximum 1.0 per cent.

Dilute 0.3 ml of solution S to 15 ml with distilled water R.

Arsenic (2.4.2, Method A): maximum 4 ppm, determined on 5 ml of solution S.

Calcium (2.4.3): maximum 1.5 per cent.

Dilute 1.3 ml of solution S to 150 ml with distilled water R. 15 ml of the solution complies with the test.

Iron (2.4.9): maximum 0.07 per cent.

Dissolve 0.15 g in 5 ml of dilute hydrochloric acid R and dilute to 10 ml with water R. Dilute 1 ml of the solution to 10 ml with water R.

Heavy metals (2.4.8): maximum 30 ppm.

To 20 ml of solution S add 15 ml of hydrochloric acid R1 and shake with 25 ml of methyl isobutyl ketone R for 2 min. Allow to stand, then separate and evaporate the aqueous layer to dryness. Dissolve the residue in 1 ml of acetic acid R and dilute to 30 ml with water R. 12 ml of the solution complies with test A. Prepare the reference solution using lead standard solution (1 ppm Pb) R.

Loss on ignition: maximum 8.0 per cent, determined on $1.00 \text{ g at } 900 \pm 25 \text{ °C}.$

ASSAY

Dissolve 0.320 g in 20 ml of dilute hydrochloric acid R and dilute to 100.0 ml with water R. Using 20.0 ml of the solution, carry out the complexometric titration of magnesium (2.5.11).

1 ml of $0.1\,M$ sodium edetate is equivalent to $4.030\,\mathrm{mg}$ of MgO.

01/2008:0040 corrected 6.0

MAGNESIUM OXIDE, LIGHT

Magnesii oxidum leve

MgO [1309-48-4] $M_{\rm r} 40.30$

DEFINITION

Content: 98.0 per cent to 100.5 per cent of MgO (ignited substance).

CHARACTERS

Appearance: fine, white or almost white, amorphous powder.

Solubility: practically insoluble in water. It dissolves in dilute acids with at most slight effervescence.

IDENTIFICATION

- A. 15 g has an apparent volume (2.9.15) before settling of at least 100 ml.
- B. Dissolve about 15 mg in 2 ml of *dilute nitric acid R* and neutralise with *dilute sodium hydroxide solution R*. The solution gives the reaction of magnesium (2.3.1).
- C. Loss on ignition (see Tests).

TESTS

Solution S. Dissolve 5.0 g in a mixture of 30 ml of *distilled water R* and 70 ml of *acetic acid R*, boil for 2 min, cool and dilute to 100 ml with *dilute acetic acid R*. Filter, if necessary, through a previously ignited and tared porcelain or silica filter crucible of a suitable porosity to give a clear filtrate.

Appearance of solution. Solution S is not more intensely coloured than reference solution B_2 (2.2.2, Method II).

Soluble substances: maximum 2.0 per cent.

To 2.00 g add 100 ml of *water R* and boil for 5 min. Filter whilst hot through a sintered-glass filter (40) (2.1.2), allow to cool and dilute to 100 ml with *water R*. Evaporate 50 ml of the filtrate to dryness and dry at 100-105 °C. The residue weighs a maximum of 20 mg.

Substances insoluble in acetic acid: maximum 0.1 per cent.

Any residue obtained during the preparation of solution S, washed, dried, and ignited at 600 ± 50 °C, weighs a maximum of 5 mg.

Chlorides (2.4.4): maximum 0.15 per cent.

Dilute 0.7 ml of solution S to 15 ml with water R.

Sulphates (2.4.13): maximum 1.0 per cent.

Dilute 0.3 ml of solution S to 15 ml with distilled water R.

Arsenic (2.4.2, Method A): maximum 4 ppm, determined on 5 ml of solution S.

Calcium (2.4.3): maximum 1.5 per cent.

Dilute 1.3 ml of solution S to 150 ml with *distilled water R*. 15 ml of the solution complies with the test.

Iron (2.4.9): maximum 0.1 per cent.

Dissolve 50 mg in 5 ml of *dilute hydrochloric acid R* and dilute to 10 ml with *water R*. Dilute 2 ml of t his solution to 10 ml with *water R*.

Heavy metals (2.4.8): maximum 30 ppm.

To 20 ml of solution S add 15 ml of *hydrochloric acid R1* and shake with 25 ml of *methyl isobutyl ketone R* for 2 min. Allow to stand, then separate and evaporate the aqueous layer to dryness. Dissolve the residue in 1.5 ml of *acetic acid R* and dilute to 30 ml with *water R*. 12 ml of the solution complies with test A. Prepare the reference solution using *lead standard solution (1 ppm Pb) R*.

Loss on ignition: maximum 8.0 per cent, determined on 1.00 g at $900 \pm 25 \,^{\circ}\text{C}$.

ASSAY

Dissolve 0.320 g in 20 ml of *dilute hydrochloric acid R* and dilute to 100.0 ml with *water R*. Using 20.0 ml of the solution, carry out the complexometric titration of magnesium (2.5.11).

1 ml of 0.1 M sodium edetate is equivalent to 4.030 mg of MgO.

01/2008:1540 corrected 6.0

MAGNESIUM PEROXIDE

Magnesii peroxidum

DEFINITION

Mixture of magnesium peroxide and magnesium oxide.

Content: 22.0 per cent to 28.0 per cent of MgO_2 (M_r 56.30).

CHARACTERS

Appearance: white or slightly yellow, amorphous, light powder.

Solubility: practically insoluble in water and in ethanol (96 per cent). It dissolves in dilute mineral acids.

IDENTIFICATION

- A. Dissolve about 15 mg in 2 ml of *dilute nitric acid R* and neutralise with *dilute sodium hydroxide solution R*. The solution gives the reaction of magnesium (2.3.1).
- B. Dissolve 0.1 g in 2 ml of *dilute sulphuric acid R* and dilute to 10 ml with *water R*. Shake 1 ml of this solution with 5 ml of *ether R* and 0.5 ml of *potassium dichromate solution R1*. The ether layer is blue.

TESTS

Solution S1. Dissolve cautiously 5.0 g in 40 ml of *hydrochloric acid R1*. Cautiously evaporate the solution to 10 ml and dilute to 100 ml with a mixture of equal volumes of *acetic acid R* and *distilled water R*. Filter, if necessary, through a previously ignited and tared porcelain or silica filter crucible of suitable porosity to give a clear filtrate. Keep the residue for the test for acid insoluble substances.

Solution S2. Dilute 5 ml of solution S1 to 25 ml with *distilled water R*.

Appearance of solution. Solution S1 is not more intensely coloured than reference solution B_4 (2.2.2, Method II).