Calculate the percentage content of polymyxin B3, of polymyxin B1-I, and of the sum of polymyxins B1, B2, B3 and B1-I, using the following expression:

$$C_{\mathrm{B}i} = \frac{A_{\mathrm{B}i} \times m_2 \times D_{\mathrm{B}i}}{m_1 \times B_{\mathrm{B}i}}$$

 $C_{Bi}$  = percentage content of polymyxin Bi;

 $A_{Bi}$  = area of the peak due to polymyxin Bi in the chromatogram obtained with the test solution;

 $m_1$  = mass of the substance to be examined (dried substance) in the test solution, in milligrams;

 $B_{Bi}$  = area of the peak due to polymyxin Bi in the chromatogram obtained with reference solution (a);

 $m_2$  = mass of *polymyxin B sulphate CRS* in reference solution (a), in milligrams;

 $D_{Bi}$  = declared percentage content for polymyxin Bi in polymyxin B sulphate CRS.

#### **STORAGE**

In an airtight container, protected from light. If the substance is sterile, store in a sterile, airtight, tamper-proof container.

01/2008:0426

## **POLYSORBATE 20**

# Polysorbatum 20

#### DEFINITION

Mixture of partial esters of fatty acids, mainly lauric (dodecanoic) acid, with sorbitol and its anhydrides ethoxylated with approximately 20 moles of ethylene oxide for each mole of sorbitol and sorbitol anhydrides.

#### **CHARACTERS**

Appearance: oily, yellow to brownish-yellow, clear or slightly opalescent liquid.

*Solubility*: soluble in water, in ethanol, in ethyl acetate and in methanol, practically insoluble in fatty oils and in liquid paraffin.

Relative density: about 1.10. Viscosity: about 400 mPas at 25 °C.

#### **IDENTIFICATION**

First identication: A, D.

Second identification: B, C, D, E.

A. Infrared absorption spectrophotometry (2.2.24). Comparison: Ph. Eur. reference spectrum of polysorbate 20.

- B. It complies with the test for hydroxyl value (see Tests).
- C. It complies with the test for saponification value (see Tests).
- D. It complies with the test for composition of fatty acids (see Tests).
- E. Dissolve 0.1 g in 5 ml of *methylene chloride R*. Add 0.1 g of *potassium thiocyanate R* and 0.1 g of *cobalt nitrate R*. Stir with a glass rod. The solution becomes blue.

## TESTS

Acid value (2.5.1): maximum 2.0.

Dissolve  $5.0~\mbox{g}$  in  $50~\mbox{ml}$  of the prescribed mixture of solvent.

**Hydroxyl value** (2.5.3, Method A): 96 to 108.

Peroxide value: maximum 10.0.

Introduce 10.0 g into a 100 ml beaker, dissolve with *glacial* acetic acid R and dilute to 20 ml with the same solvent. Add 1 ml of saturated potassium iodide solution R and allow to stand for 1 min. Add 50 ml of carbon dioxide-free water R and a magnetic stirring bar. Titrate with 0.01 M sodium thiosulphate, determining the end-point potentiometrically (2.2.20). Carry out a blank titration.

Determine the peroxide value using the following expression:

$$\frac{(n_1 - n_2) \times M \times 1000}{m}$$

 $n_1$  = volume of 0.01 M sodium thiosulphate required for the substance to be examined, in millilitres,

 $n_2$  = volume of 0.01 M sodium thiosulphate required for the blank, in millilitres,

M = molarity of the sodium thiosulphate solution, in moles per litre,

m =mass of substance to be examined, in grams.

**Saponification value** (*2.5.6*): 40 to 50, determined on 4.0 g. Use 15.0 ml of *0.5 M alcoholic potassium hydroxide* and dilute with 50 ml of *alcohol R* before carrying out the titration. Heat under reflux for 60 min.

**Composition of fatty acids** (2.4.22, Method C). Prepare reference solution (a) as indicated in Table 2.4.22.-2.

Column:

- material: fused silica,

- dimensions: l = 30 m,  $\emptyset = 0.32 \text{ mm}$ ,

 stationary phase: macrogol 20 000 R (film thickness 0.5 µm).

Carrier gas: helium for chromatography R.

Linear velocity: 50 cm/s.

Temperature:

|                | Time<br>(min) | Temperature<br>(°C)  |
|----------------|---------------|----------------------|
| Column         | 0 - 14        | $80 \rightarrow 220$ |
|                | 14 - 54       | 220                  |
| Injection port |               | 250                  |
| Detector       |               | 250                  |

Detection: flame ionisation.

Injection: 1 µl.

Composition of the fatty acid fraction of the substance:

- caproic acid: maximum 1.0 per cent,caprylic acid: maximum 10.0 per cent,
- capric acid: maximum 10.0 per cent,
- lauric acid: 40.0 per cent to 60.0 per cent,
- myristic acid: 14.0 per cent to 25.0 per cent,
- palmitic acid: 7.0 per cent to 15.0 per cent,
- stearic acid: maximum 7.0 per cent,
- *oleic acid*: maximum 11.0 per cent,
- linoleic acid: maximum 3.0 per cent.

**Ethylene oxide and dioxan** (2.4.25, Method A): maximum 1 ppm of ethylene oxide and 10 ppm of dioxan.

**Heavy metals** (2.4.8): maximum 10 ppm.

2.0 g complies with limit test C. Prepare the standard using 2 ml of *lead standard solution (10 ppm Pb) R*.

**Water** (2.5.12): maximum 3.0 per cent, determined on 1.00 g. **Total ash** (2.4.16): maximum 0.25 per cent, determined on 2.0 g.

#### **STORAGE**

In an airtight container, protected from light.

01/2008:1914

## **POLYSORBATE 40**

# Polysorbatum 40

## **DEFINITION**

Mixture of partial esters of fatty acids, mainly *Palmitic acid (1904)*, with sorbitol and its anhydrides ethoxylated with approximately 20 moles of ethylene oxide for each mole of sorbitol and sorbitol anhydrides.

#### **CHARACTERS**

Appearance: oily, viscous, yellowish or brownish-yellow liquid.

*Solubility*: miscible with water, with ethanol, with ethyl acetate and with methanol, practically insoluble in fatty oils and in liquid paraffin.

Relative density: about 1.10. Viscosity: about 400 mPas at 30 °C.

### **IDENTIFICATION**

First identication: A. D.

Second identification: B, C, D, E.

A. Infrared absorption spectrophotometry (2.2.24).

Comparison: Ph. Eur. reference spectrum of polysorbate 40.

- B. It complies with the test for hydroxyl value (see Tests).
- C. It complies with the test for saponification value (see Tests).
- D. It complies with the test for composition of fatty acids (see Tests).
- E. Dissolve 0.1 g in 5 ml of *methylene chloride R*. Add 0.1 g of *potassium thiocyanate R* and 0.1 g of *cobalt nitrate R*. Stir with a glass rod. The solution becomes blue.

### **TESTS**

Acid value (2.5.1): maximum 2.0.

Dissolve 5.0 g in 50 ml of the prescribed mixture of solvents.

**Hydroxyl value** (2.5.3, Method A): 89 to 105.

Peroxide value: maximum 10.0.

Introduce 10.0 g into a 100 ml beaker, dissolve with *glacial* acetic acid R and dilute to 20 ml with the same solvent. Add 1 ml of saturated potassium iodide solution R and allow to stand for 1 min. Add 50 ml of carbon dioxide-free water R and a magnetic stirring bar. Titrate with 0.01 M sodium thiosulphate, determining the end-point potentiometrically (2.2.20). Carry out a blank titration.

Determine the peroxide value using the following expression:

$$\frac{(n_1 - n_2) \times M \times 1000}{m}$$

 $n_1$  = volume of 0.01 M sodium thiosulphate required for the substance to be examined, in millilitres,

 $n_2$  = volume of 0.01 M sodium thiosulphate required for the blank, in millilitres,

M = molarity of the sodium thiosulphate solution, in moles per litre,

m =mass of substance to be examined, in grams.

Saponification value (2.5.6): 41 to 52, determined on 4.0 g.

Use 15.0 ml of 0.5 M alcoholic potassium hydroxide and dilute with 50 ml of alcohol R before carrying out the titration. Heat under reflux for 60 min.

**Composition of fatty acids** (*2.4.22, Method C*). Prepare reference solution (a) as indicated in Table 2.4.22.-1.

Column:

material: fused silica,

- size: l = 30 m,  $\emptyset = 0.32 \text{ mm}$ ,

 stationary phase: macrogol 20 000 R (film thickness 0.5 μm).

Carrier gas: helium for chromatography R.

Linear velocity: 50 cm/s.

Temperature:

|                | Time<br>(min) | Temperature<br>(°C)  |
|----------------|---------------|----------------------|
| Column         | 0 - 14        | $80 \rightarrow 220$ |
|                | 14 - 54       | 220                  |
| Injection port |               | 250                  |
| Detector       |               | 250                  |

Detection: flame ionisation.

Injection: 1 µl.

Composition of the fatty acid fraction of the substance:

- palmitic acid: minimum 92.0 per cent.

**Ethylene oxide and dioxan** (2.4.25, Method A): maximum 1 ppm of ethylene oxide and maximum 10 ppm of dioxan.

**Heavy metals** (2.4.8): maximum 10 ppm.

2.0 g complies with limit test C. Prepare the standard using 2 ml of *lead standard solution (10 ppm Pb) R*.

Water (2.5.12): maximum 3.0 per cent, determined on 1.00 g.

**Total ash** (2.4.16): maximum 0.25 per cent, determined on 2.0 g.

#### **STORAGE**

In an airtight container, protected from light.

01/2008:0427

## **POLYSORBATE 60**

# Polysorbatum 60

### **DEFINITION**

Mixture of partial esters of fatty acids, mainly *Stearic acid 50* (*1474*), with sorbitol and its anhydrides ethoxylated with approximately 20 moles of ethylene oxide for each mole of sorbitol and sorbitol anhydrides.

### **CHARACTERS**

Appearance: yellowish-brown gelatinous mass which becomes a clear liquid at temperatures above 25 °C.